CS143 Handout 11
Summer 2012 July 9st, 2012

SLR and LR(1) Parsing

Handout written by Maggie Johnson and revised by Julie Zelenski.

LR(0) Isn’t Good Enough

LR(0) is the simplest technique in the LR family. Although that makes it the easiest to
learn, these parsers are too weak to be of practical use for anything but a very limited set
of grammars. The examples given at the end of the LR(0) handout show how even small
additions to an LR(0) grammar can introduce conflicts that make it no longer LR(0). The
fundamental limitation of LR(0) is the zero, meaning no lookahead tokens are used. It is
a stifling constraint to have to make decisions using only what has already been read,
without even glancing at what comes next in the input. If we could peek at the next
token and use that as part of the decision-making, we will find that it allows for a much
larger class of grammars to be parsed.

SLR(1)

We will first consider SLR(1) where the S stands for simple ©. SLR(1) parsers use the
same LR(0) configurating sets and have the same table structure and parser operation,
so everything you've already learned about LR(0) applies here. The difference comes in
assigning table actions, where we are going to use one token of lookahead to help
arbitrate among the conflicts. If we think back to the kind of conflicts we encountered in
LR(0) parsing, it was the reduce actions that cause us grief. A state in an LR(0) parser
can have at most one reduce action and cannot have both shift and reduce instructions.
Since a reduce is indicated for any completed item, this dictates that each completed
item must be in a state by itself. But let's revisit the assumption that if the item is
complete, the parser must choose to reduce. Is that always appropriate? If we peeked at
the next upcoming token, it may tell us something that invalidates that reduction. If the
sequence on top of the stack could be reduced to the non-terminal A, what tokens do we
expect to find as the next input? What tokens would tell us that the reduction is not
appropriate? Perhaps Follow(A) could be useful here!

The simple improvement that SLR(1) makes on the basic LR(0) parser is to reduce only if
the next input token is a member of the follow set of the non-terminal being reduced.
When filling in the table, we don't assume a reduce on all inputs as we did in LR(0), we
selectively choose the reduction only when the next input symbols in a member of the
follow set. To be more precise, here is the algorithm for SLR(1) table construction (note
all steps are the same as for LR(0) table construction except for 2a)

1. Construct F = {Ip, I1, ... In}, the collection of LR(0) configurating sets for G'.

2. Stateiis determined from Ij. The parsing actions for the state are determined as

follows:
a) If A-> ueisin [j then set Actionli,a] to reduce A -> u for all a in Follow(A) (A is
not S').

b) If S'-> Se is in Ij then set Actionli,$] to accept.
c) If A->uecavisinljand successor(lj, a) = Ij, then set Actionli,a] to shiftj (a
must be a terminal).
3. The goto transitions for state i are constructed for all non-terminals A using the
rule: If successor(lj, A) = Ij, then Goto [i, A] = j.

4. All entries not defined by rules 2 and 3 are errors.

5. The initial state is the one constructed from the configurating set containing
S' -> S,

In the SLR(1) parser, it is allowable for there to be both shift and reduce items in the
same state as well as multiple reduce items. The SLR(1) parser will be able to determine
which action to take as long as the follow sets are disjoint.

Let's consider those changes at the end of the LR(0) handout to the simplified expression
grammar that would have made it no longer LR(0). Here is the version with the addition
of array access:

E'-> E
E->E+T|T
T -> (E) | id | id[E]

Here are the first two LR(0) configurating sets entered if id is the first token of the input.
([E'->E ‘

E-><E+T

E-> T

T -> (E)

T-> «id

T -> «id[E]

—/

T->ide
T -> id*[E]

In an LR(0) parser, the set on the right has a shift-reduce conflict. However, an SLR(1)
will compute Follow(T) = { +) 1 $ } and only enter the reduce action on those tokens. The
input [will shift and there is no conflict. Thus this grammar is SLR(1) even though it is
not LR(0).

Similarly, the simplified expression grammar with the assignment addition:

E'->E

E->E+T |T|V=E
T ->(E)|id

V ->id

Here are the first two LR(0) configurating sets entered if id is the first token of the input.

E'-> «E

E->«E+T
-> T

-> e\/=F
> +(E)
->
->

*id
*id

<—d-4dmm

N

In an LR(0) parser, the set on the right has a reduce-reduce conflict. However, an SLR(1)
parser will compute Follow(T) = { +) $ } and Follow(V) = { = } and thus can distinguish
which reduction to apply depending on the next input token. The modified grammar is
SLR(1).

SLR(1) Grammars
A grammar is SLR(1) if the following two conditions hold for each configurating set:

1. For any item A -> uexy in the set, with terminal x, there is no complete item B ->
we in that set with x in Follow(B). In the tables, this translates no shift-reduce
conflict on any state. This means the successor function for x from that set either
shifts to a new state or reduces, but not both.

2. For any two complete items A -> u® and B -> ve® in the set, the follow sets must
be disjoint, e.g. Follow(A) n Follow(B) is empty. This translates to no reduce-reduce
conflict on any state. If more than one non-terminal could be reduced from this set,
it must be possible to uniquely determine which using only one token of
lookahead.

All LR(0) grammars are SLR(1) but the reverse is not true, as the two extensions to our
expression grammar demonstrated. The addition of just one token of lookahead and use
of the follow set greatly expands the class of grammars that can be parsed without
conflict.

SLR(1) Limitations

The SLR(1) technique still leaves something to be desired, because we are not using all
the information that we have at our disposal. When we have a completed configuration
(i.e., dot at the end) such as X -> u+, we know that this corresponds to a situation in

which we have u as a handle on top of the stack which we then can reduce, i.e., replacing
u by X. We allow such a reduction whenever the next symbol is in Follow(X). However, it
may be that we should not reduce for every symbol in Follow(X), because the symbols
below u on the stack preclude u being a handle for reduction in this case. In other
words, SLR(1) states only tell us about the sequence on top of the stack, not what is
below it on the stack. We may need to divide an SLR(1) state into separate states to
differentiate the possible means by which that sequence has appeared on the stack. By
carrying more information in the state, it will allow us to rule out these invalid
reductions.Consider this example from Aho/Sethi/Ullman that defines a small grammar
for assignment statements, using the non-terminal L for l-value and R for r-value and *
for contents-of.

S'->S
S->L=R
S->R
L -> *R
L->id
R->1L
Ip: S'-> S Is: L-> ide
S->e+L=R
S-> R Iz S->L=°R
L -> ¢*R R-> oL
L -> eid L -> «*R
R-> eL L-> «id
Ill S'-> Se I7Z L -> *Re
Ir: S->Le=R I R->Le
R->Le
Is0 S->L=Re
I5: S ->Re

Iy: L -> *eR
R-> L
L-> «*R
L-> eid

Consider parsing the expression id = id. After working our way to configurating set I,
having reduced the first id to L, we have a choice upon seeing = coming up in the input.
The first item in the set wants to set Action[2,=] be shift 6, which corresponds to moving
on to find the rest of the assignment. However, = is also in Follow(R) because S => L=R
=>*R = R. Thus, the second configuration wants to reduce in that slot R->L. This is a
shift-reduce conflict but not because of any problem with the grammar. A SLR parser
does not remember enough left context to decide what should happen when it
encounters a = in the input having seen a string reducible to L. Although the sequence

on top of the stack could be reduced to R, we don’t want to choose this reduction
because there is no possible right sentential form that begins R = ... (there is one
beginning *R = ... which is not the same). Thus, the correct choice is to shift.

It's not further lookahead that the SLR tables are missing—we don’t need to see
additional symbols beyond the first token in the input, we have already seen the
information that allows us to determine the correct choice. What we need is to retain a
little more of the left context that brought us here. In this example grammar, the only
time we should consider reducing by production R->L is during a derivation that has
already seen a * or an =. Just using the entire follow set is not discriminating enough as
the guide for when to reduce. The follow set contains symbols that can follow R in any
position within a valid sentence but it does not precisely indicate which symbols follow
R at this particular point in a derivation. So we will augment our states to include
information about what portion of the follow set is appropriate given the path we have
taken to that state.

We can be in state 2 for one of two reasons, we are trying to build from S -> L = R or
from S -> R -> L. If the upcoming symbol is =, then that rules out the second choice and
we must be building the first, which tells us to shift. The reduction should only be
applied if the next input symbol is $. Even though = is Follow(R) because of the other
contexts that an R can appear, in this particular situation, it is not appropriate because
when deriving a sentence S -> R -> L, = cannot follow R.

Constructing LR(1) parsing tables

LR or canonical LR parsing incorporates the required extra information into the state by
redefining configurations to include a terminal symbol as an added component. LR(1)
configurations have the general form:

A -> X1..Xj ¢ Xj+1...Xj , a

This means we have states corresponding to X;...X; on the stack and we are looking to
put states corresponding to Xj+1...Xj on the stack and then reduce, but only if the token
following X; is the terminal a. a is called the lookahead of the configuration. The

lookahead only comes into play with LR(1) configurations with a dot at the right end:

A ->Xi1..Xj*, a

This means we have states corresponding to X;...X; on the stack but we may only reduce
when the next symbol is a. The symbol a is either a terminal or $ (end of input marker).
With SLR(1) parsing, we would reduce if the next token was any of those in Follow(A).
With LR(1) parsing, we reduce only if the next token is exactly a. We may have more

than one symbol in the lookahead for the configuration, as a convenience, we list those
symbols separated by a forward slash. Thus, the configuration A -> ue, a/b/c says that it
is valid to reduce u to A only if the next token is equal to a, b, or c. The configuration
lookahead will always be a subset of Follow(A).

Recall the definition of a viable prefix from the previous handout. Viable prefixes are
those prefixes of right sentential forms that can appear on the stack of a shift-reduce
parser. Formally we say that a configuration [A -> u+y, a] is valid for a viable prefix a if
there is a rightmost derivation S =>* BAw =>* Buvw where o = pu and either a is the first
symbol of w or wis 3 and a is $.

For example:

S->27Z
Z->xZ|y

There is a rightmost derivation S =>* xxZxy => xxxZxy. We see that configuration

[Z -> x+Z, x] is valid for viable prefix a = xxx by letting B = xx, A=Z, w = xy, u = x and
v = Z. Another example is from the rightmost derivation S =>* ZxZ => ZxxZ, making
[Z -> x+Z, $] valid for viable prefix Zxx.

Often we have a number of LR(1) configurations that differ only in their lookahead
components. The addition of a lookahead component to LR(1) configurations allows us
to make parsing decisions beyond the capability of SLR(1) parsers. There is, however, a
big price to be paid. There will be more distinct configurations and thus many more
possible configurating sets. This increases the size of the goto and action tables
considerably. In the past when memory was smaller, it was difficult to find storage-
efficient ways of representing these tables, but now this is not as much of an issue. Still,
it’s a big job building LR tables for any substantial grammar by hand.

The method for constructing the configurating sets of LR(1) configurations is essentially
the same as for SLR, but there are some changes in the closure and successor operations
because we must respect the configuration lookahead. To compute the closure of an
LR(1) configurating set I:

Repeat the following until no more configurations can be added to state I:
— For each configuration [A -> u<By, alin I, for each production B -> w in G', and for
each terminal b in First(va) such that [B -> *w, blis notin I: add [B -> *w, b] to L.

What does this mean? We have a configuration with the dot before the non-terminal B.
In LR(0), we computed the closure by adding all B productions with no indication of

what was expected to follow them. In LR(1), we are a little more precise— we add each B
production but insist that each have a lookahead of va. The lookahead will be First(va)
since this is what follows B in this production. Remember that we can compute first sets
not just for a single non-terminal, but also a sequence of terminal and non-terminals.
First(va) includes the first set of the first symbol of v and then if that symbol is nullable,
we include the first set of the following symbol, and so on. If the entire sequence v is
nullable, we add the lookahead a already required by this configuration.

The successor function for the configurating set I and symbol X is computed as this:

Let J be the configurating set [A -> uX-v, a] such that [A -> ueXy, a]isin L
successor(l,X) is the closure of configurating set J.

We take each production in a configurating set, move the dot over a symbol and close on
the resulting production. This is basically the same successor function as defined for
LR(0), but we have to propagate the lookahead when computing the transitions.

We construct the complete family of all configurating sets F just as we did before. F is
initialized to the set with the closure of [S' -> S, $]. For each configurating set I and each
grammar symbol X such that successor(l,X) is not empty and not in F, add successor (I,X)
to F until no other configurating set can be added to F.

Let’s consider an example. The augmented grammar below that recognizes the regular
language a*ba*b (this example from pp. 231-236 Aho/Sethi/Ullman).

0) S'->S
1) S-> XX
2) X->aX
3) X -=>b

Here is the family of LR configuration sets:

Io: S'-> S5, % Iy: X ->be, a/b

S-> XX, %
X -> *aX, a/b Is: S->XXe, $
X -> <Db, a/b
Ieg X->a*X $
Ii: S'->S-, % X -> eaX, $
X->+Db, %
12: S -> X.Xl $
X->eaX, $ I X->be, $
X-> b, $
18: X -> aXe, a/b
Im% X->a*X, a/b
X -> «aX, a/b Ipp X->aXe, $
X -> b, a/b

The above grammar would only have seven SLR states, but has ten in canonical LR. We
end up with additional states because we have split states that have different
lookaheads. For example, states 3 and 6 are the same except for lookahead, state 3
corresponds to the context where we are in the middle of parsing the first X, state 6 is the
second X. Similarly, states 4 and 7 are completing the first and second X respectively. In
SLR, those states are not distinguished, and if we were attempting to parse a single b by
itself, we would allow that to be reduced to X, even though this will not lead to a valid
sentence. The SLR parser will eventually notice the syntax error, too, but the LR parser
figures it out a bit sooner.

To fill in the entries in the action and goto tables, we use a similar algorithm as we did
for SLR(1), but instead of assigning reduce actions using the follow set, we use the
specific lookaheads. Here are the steps to build an LR(1) parse table:

1. Construct F = {Ig, I1, ... In}, the collection of configurating sets for the augmented
grammar G' (augmented by adding the special production S' -> S).
2. Stateiis determined from Ij. The parsing actions for the state are determined as
follows:
a) If [A -> ue, al is in Ij then set Action[i,a] to reduce A -> u (Ais not S').
b) If [S' -> Se, $]is in Ij then set Action[i,$] to accept.
¢) If [A -> ueay, blisin [j and succ(lj, a) = I, then set Actionli,a] to shift j (a must be
a terminal).
3. The goto transitions for state i are constructed for all non-terminals A using the
rule: If succ(lj, A) = [j, then Goto [i, A] = j.

4. All entries not defined by rules 2 and 3 are errors.

The initial state is the one constructed from the configurating set containing S' -> «S.
Following the algorithm using the configurating sets given above, we construct this
canonical LR parse table:

State on Action Goto
top of a b $ S X
stack

0 s3 s4 1 2
1 acc

2 s6 s7 5
3 s3 s4 8
4 r3 r3

5 rl

6 s6 s7 9
7 r3

8 r2 r2

9 r2

Let’s parse an example string baab. It is a valid sentence in this language as shown by
this leftmost derivation:

S-> XX

bX

baX

baaX

baab
STACK REMAINING PARSER
STACK INPUT ACTION
So baabs$ | Shift S4
S0S4 aabs$ |Reduce 3) X ->b, goto Sp
S0S2 aabs |Shift Sg
S0S2S6 abs$ | Shift Sg
S0S256S6 bs | Shift S7
S0525656S7 $ |Reduce 3) X -> b, goto So
S0S25656S9 $ | Reduce 2) X -> aX, goto Sg
S0S2S6S9 $ | Reduce 2) X -> aX, goto Ss
S0S2Ss $ |Reduce 1) S -> XX, goto S1
S0S1 $ | Accept

Now, let’s consider what the states mean. S4 is where X -> b is completed; Sz and Se is
where we are in the middle of processing the 2 a's; S7 is where we process the final b; Sg
is where we complete the X -> aX production; Ss is where we complete S -> XX; and S is
where we accept.

LR(1) grammars

Every SLR(1) grammar is a canonical LR(1) grammar, but the canonical LR(1) parser may
have more states than the SLR(1) parser. An LR(1) grammar is not necessarily SLR(1),
the grammar given earlier is an example. Because an LR(1) parser splits states based on
differing lookaheads, it may avoid conflicts that would otherwise result if using the full
follow set.

A grammar is LR(1) if the following two conditions are satisfied for each configurating
set:

1. For any item in the set [A -> u<xy, a] with x a terminal, there is no item in the set of
the form [B -> ve, x]. In the action table, this translates no shift-reduce conflict for
any state. The successor function for x either shifts to a new state or reduces, but
not both.

2. The lookaheads for all complete items within the set must be disjoint, e.g. set
cannot have both [A -> u+, a] and [B -> v, a] This translates to no reduce-reduce
conflict on any state. If more than one non-terminal could be reduced from this
set, it must be possible to uniquely determine which is appropriate from the next
input token.

As long as there is a unique shift or reduce action on each input symbol from each state,
we can parse using an LR(1) algorithm. The above state conditions are similar to what is
required for SLR(1), but rather than the looser constraint about disjoint follow sets and
so on, canonical LR(1) computes a more precise notion of the appropriate lookahead
within a particular context and thus is able to resolve conflicts that SLR(1) would
encounter.

Bibliography
A. Aho, R. Sethi, J. Ullman, Compilers. Principles, Techniques, and Tools. Reading, MA:
Addison-Wesley, 1986.
J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill, 1990.
K. Loudon, Compiler Construction. Boston, MA: PWS, 1997
A. Pyster, Compiler Design and Construction. New York, NY: Van Nostrand Reinhold, 1988.

